
1

NEURAL NETWORK MODELING OF UH-60A PILOT VIBRATION

Sesi Kottapalli
Army/NASA Rotorcraft Division

NASA Ames Research Center
Moffett Field, California

E-mail:    Sesi.B.Kottapalli@nasa.gov  

Abstract

Full-scale flight-test pilot floor vibration is modeled using neural networks and full-scale wind tunnel test data for
low speed level flight conditions.  Neural network connections between the wind tunnel test data and the three flight
test pilot vibration components (vertical, lateral, and longitudinal) are studied.   Two full-scale UH-60A Black Hawk
databases are used.  The first database is the NASA/Army UH-60A Airloads Program flight test database.  The
second database is the UH-60A rotor-only wind tunnel database that was acquired in the NASA Ames 80- by 120-
Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA).  Using neural networks, the flight-test pilot
vibration is modeled using the wind tunnel rotating system hub accelerations, and separately, using the hub loads.
The results show that the wind tunnel rotating system hub accelerations and the operating parameters can represent
the flight test pilot vibration.  The six components of the wind tunnel N/rev balance-system hub loads and the
operating parameters can also represent the flight test pilot vibration.  The present neural network connections can
significantly increase the value of wind tunnel testing.

Notation

C
T

Rotor thrust coefficient

C
W

Helicopter gross weight coefficient

LRTA Large Rotor Test Apparatus

MISO Multiple-input, single-output

N Number of main rotor blades, N = 4 for the
UH-60A

N/rev Integer (N) multiple of main rotor speed

PLATV Peak, N/rev pilot floor lateral vibration, g’s

PLONGV Peak, N/rev pilot floor longitudinal
vibration, g’s

PVV Peak, N/rev pilot floor vertical vibration,
g’s

R Linear regression correlation

RMS error Root mean square error, g's

α
s

Rotor shaft angle measured from vertical,
positive aft, deg

_____________________  
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σ Rotor solidity ratio

Introduction

At present, helicopter vibration levels cannot be
predicted with confidence.  The relationships between the
helicopter rotor hub accelerations and the corresponding
fuselage vibration may be linear or nonlinear, and
involve many variables.  Here, fuselage vibration is
defined as the N/rev fuselage acceleration at the pilot
floor location where N is the number of blades.  Using
only flight test data, neural networks were used to
connect the flight test rotating system hub accelerations
to the flight test pilot vibration (Refs. 1 and 2).  The
current study uses neural networks to connect ground
based wind tunnel data to the flight test pilot vibration
in low speed level flight.  Neural network relationships
between the wind tunnel data and the three flight test
pilot floor vibration components (vertical, lateral, and
longitudinal) are studied in this paper.  A recent initial
study (Ref. 3) had considered only the pilot floor vertical
vibration component.

This neural network study introduces the use of ground-
based wind tunnel test data to model the pilot floor
vibration in flight. Two full-scale UH-60A Black Hawk
databases are used.  The first database is the
NASA/Army UH-60A Airloads Program flight test
database (Ref. 4).  The second database is the low speed
full-scale UH-60A rotor-only wind tunnel database
(Refs. 5-7) that was acquired in the NASA Ames 80- by
120-Foot Wind Tunnel with the Large Rotor Test
Apparatus (LRTA).  The successful establishment of
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such neural network based connections (relationships)
between the wind tunnel parameters and the flight test
data can increase the value of wind tunnel testing.  This
is because wind tunnel testing is less expensive than
flight testing and a range of steady flight conditions can
be easily explored.  In the present study, the measured
wind tunnel parameters under consideration include both
rotating system parameters (hub accelerations) and fixed
system parameters (hub loads from the dynamic rotor
balance system).

Using neural networks and flight test data, it was shown
earlier (Refs. 1 and 2) that the flight test hub
accelerations plus the advance ratio and gross weight
could be used to model the flight test pilot floor
vibration. It was shown in Ref. 3 that the wind tunnel
and flight test data of interest have similar trends (Fig. 1
of Ref. 3).  Based on the above noted similarity, the
present neural network study proceeds to establish the
connections between the wind tunnel hub accelerations
and the flight test pilot floor vibration in low speed
level flight.  Subsequently, this study also considers
additional wind tunnel data such as the fixed system
rotor-generated balance-system loads.

The focus of future work is to extend the present study
to predict the flight test pilot vibration with active
controls using the available wind tunnel data.

Objectives

The general objective of this study is to evaluate the
potential of using wind tunnel measurement to represent
flight vehicle vibrations using neural networks.  The
present study has the following four specific objectives:

1. Using the flight test advance ratio and gross weight,
obtain low speed, neural network based models of
the PVV, the PLATV, and the PLONGV.  

2. Using the measured wind tunnel rotating system
hub accelerations and operating parameters,
determine whether reasonably accurate neural
network based models of the flight test PVV,
PLATV, and PLONGV can be obtained.

3. Using the measured six components of the wind
tunnel fixed system N/rev balance hub loads and the
operating parameters, determine whether reasonably
accurate neural network models of the PVV, the
PLATV, and the PLONGV can be obtained.

4. Assess the results to determine whether a particular
approach is markedly better than the others to
predict the flight test measurements or whether
alternative wind tunnel test measurements would be
required.

Flight Test and Wind Tunnel Databases

The source of the flight test data was the NASA/Army
UH-60A Airloads Program flight test database (Ref. 4).
The flight test data were obtained with the bifilar
vibration absorbers installed on the UH-60A.  The
creation of the pilot floor vibration components (PVV,
PLATV, and PLONGV) database has been described
separately (Refs. 1 and 2).  The present study considers
the flight test rotating system hub accelerometers.
Specifically, the (N-1)P and the (N+1)P tangential (in-
plane) hub accelerations and the NP vertical hub
acceleration are considered.  The number of flight test
data points that are of present interest is 47 (low speed
level flight conditions).

The low speed full-scale UH-60A wind tunnel database
(Refs. 5-7) that was acquired in the NASA Ames 80- by
120-Foot Wind Tunnel with the Large Rotor Test
Apparatus (LRTA) is used.  The bifilar vibration
absorbers were not installed during this test.  The
present study considers the (N-1)P and the (N+1)P
tangential (in-plane) hub accelerations and the NP
vertical hub acceleration.  Also, the six components of
the N/rev hub loads from the LRTA dynamic rotor
balance-system are considered (normal force, axial force,
side force, pitching moment, rolling moment, and
yawing moment).  Sixty-two wind tunnel data points
were used in this study.  These wind tunnel data points
include variations in advance ratio, thrust coefficient, and
shaft angle (the variations in the shaft angle allow for
simulation of flight conditions that include level flight,
climb and descent conditions).

Procedurally, the wind tunnel and the flight test
operating conditions are matched in a simple manner.
The wind tunnel and flight test advance ratios are
matched, and the flight test CW/σ and the wind tunnel
(CTcosα

s
)/σ are matched.  The above approach of

relating the wind tunnel variables to the flight test
variables is believed to be an adequate approach for this
initial study that includes all three pilot floor vibration
components.  

Basic Variations

Figures 1-3 show the low-speed level-flight variations of
the flight test pilot vibration with advance ratio.  In
addition to the variation in the advance ratio covered in
these figures, these data involve variations in CW/σ.

The measured, subject wind tunnel data were shown in
Ref. 3 (Figs. 2-5 of Ref. 3) and are not included in this
paper.  The wind tunnel measurements include the
rotating system hub accelerations and the fixed system
hub loads.  The wind tunnel database contains 62 points.
In addition to the variation in the advance ratio, the wind
tunnel data involve variations in C

T
 and α

s
.  As a result,
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many of the wind tunnel operating conditions do not
simulate level flight.  The measured wind tunnel data
were previously validated in Ref. 3, i.e., an assessment
of the quality of the wind tunnel was performed and the
data were found to be of good quality.

In this paper, the rotating system (N-1)P and (N+1)P
tangential (in-plane) hub accelerations and the NP
vertical hub acceleration are referred to as the "three
relevant" hub acceleration components.  Also, the wind
tunnel advance ratio and (CTcosα

s
)/σ are referred to as

the wind tunnel operating condition parameters (the
"operating parameters"). This neural network based
modeling study considers low speed level flight
conditions and does not include the hover condition.

Neural Network Approach

The overall neural network modeling approach is given
in Ref. 1.  To accurately capture the required functional
dependencies, the neural network inputs must be
carefully selected and account for all important physical
traits that are specific to the application.  The back-
propagation type of network with one hidden layer, a
hyperbolic tangent as the basis function, and the
extended-delta-bar-delta (EDBD) algorithm as the
learning rule (Ref. 8) is used in this study.  The required
number of neural network processing elements (PEs)
depends on the specific application.  The determination
of the appropriate number of PEs is done by starting
with a minimum number of PEs.  Additional PEs are
added to improve neural network performance by
reducing the RMS error between the test data and the
neural network predictions.

For the notation used in this paper, a neural network
architecture such as "2-3-1" refers to a neural network
with two inputs, three processing elements in the single
hidden layer, and one output.  This application of neural
networks has been conducted using the neural networks
package NeuralWorks Pro II/PLUS (version 5.51) by
NeuralWare (Ref. 8).

Results

This neural network study separately considers the three
components of the N/rev pilot floor vibration, namely,
the vertical component, PVV, and the two in-plane
components, PLATV and PLONGV.  In the present
study, the flight test pilot floor vibration is predicted
using neural networks and measured ground based wind
tunnel data.  The measured wind tunnel data include the
three relevant rotating system hub accelerations and
separately, the fixed system N/rev balance-system hub
loads.  In this study, the neural network training results
(the correlation results) are presented along with the
following two parameters, the linear regression
correlation "R," where an "R" close to 1 indicates that a

regression-based relationship exists between the test data
and the neural network predictions, and the RMS error.

Since the actual flight test PVV, PLATV, and
PLONGV values are originally from the 47-point flight
test database, for present purposes, the appropriate
values of the PVV, PLATV, and PLONGV have to be
obtained at the 62-point wind tunnel operating condition
values.  The pilot floor vibration components at the
wind tunnel operating conditions are referred to as the
"flight test PVV," the "flight test PLATV," and the
"flight test PLONGV."  These flight test values are
obtained as described in the following section.

Pilot vibration from flight test advance ratio
and gross weight

Three different MISO 2-3-1 back-propagation neural
networks are trained from the three 47-point flight test
databases (one for each of the three vibration
components).  The two inputs are as follows: the flight
test advance ratio and CW/σ.  The single output is the
actual, respective pilot floor vibration value (PVV or
PLATV or PLONGV).  For PVV, the above back-
propagation network has been trained for 300,000
iterations with resulting R = 0.754 and RMS error =
0.019 g's.  For PLATV, the above back-propagation
network has been trained for 10,000 iterations with
resulting R = 0.626 and RMS error = 0.024 g's.  For
PLONGV, the above back-propagation network has been
trained for 200,000 iterations with resulting R = 0.860
and RMS error = 0.019 g's.  Figures 4-6 show the
resulting correlation plots for the PVV, PLATV, and
PLONGV, respectively.  Figures 4-6 show that, for
purposes of this initial study, the advance ratio and the
gross weight can reasonably predict the low speed pilot
floor vibration.  Representative parametric variations of
the pilot floor vibration components have been obtained
by executing the above three trained back-propagation
networks with varying inputs (advance ratio and weight
coefficient/solidity ratio).  The resulting neural network
predictions display consistent trends and are shown in
Figs. 7-9. Figures 7-9 show the low speed, neural
network predicted parametric variations of the PVV (Fig.
7), the PLATV (Fig. 8), and the PLONGV (Fig. 9)
versus the advance ratio for a weight coefficient/solidity
ratio range 0.07 to 0.13 and an advance ratio range 0.09
to 0.19.

Figures 10-12 show the flight test PVV (Fig. 10),
PLATV (Fig. 11), and PLONGV (Fig. 12) variations
with the advance ratio where the respective neural
network has been executed using the wind tunnel
operating parameters as the inputs (62 points).

The following sections describe three different methods
of predicting the pilot floor vibration.  The first method
uses the flight test rotating system hub accelerations.



4

The second method uses the measured wind tunnel
rotating system hub accelerations, and the third method
uses the measured wind tunnel fixed system N/rev
balance-system hub loads. In this paper, representative,
predicted pilot floor vibration variations with advance
ratio for CW/σ (or equivalently, (CTcosα

s
)/σ) = 0.08 are

presented.

Pilot vibration prediction using flight test
rotating system hub accelerations
 

Three different MISO 5-6-1 back-propagation neural
networks are used (one for each of the three vibration
components).  The five flight test inputs are as follows:
the three relevant actual flight test rotating system hub
accelerations, the advance ratio, and CW/σ.  The single
output is the actual, respective pilot floor vibration
value (PVV or PLATV or PLONGV).  For PVV, the
above back-propagation network has been trained for 3
million iterations with resulting R = 0.991 and RMS
error = 0.004 g's.  For PLATV, the above back-
propagation network has been trained for 3 million
iterations with resulting R = 0.979 and RMS error =
0.006 g's.  For PLONGV, the above back-propagation
network has been trained for 820,000 iterations with
resulting R = 0.994 and RMS error = 0.004 g's.  The
three correlation plots and the predictions for the three
pilot floor vibration components are presented as
follows.

PVV from flight test hub accelerations.  Figure 13a
shows the correlation plot for the PVV using the flight
test hub accelerations.  Figure 13b shows the
representative, predicted PVV using the flight test hub
accelerations and the flight test PVV derived from Fig.
10 (from the neural network used to obtain Fig. 10).  In
Fig. 13b, the two PVV variations with advance ratio (at
constant thrust) show similar trends, namely, showing
first an increase in the pilot floor vertical vibration with
advance ratio and subsequently showing a decrease in the
pilot floor vertical vibration with advance ratio.

PLATV from flight test hub accelerations. Figure 14a
shows the correlation plot for the PLATV using the
flight test hub accelerations. Figure 14b shows the
representative, predicted PLATV using the flight test
hub accelerations and the flight test PLATV derived
from Fig. 11 (from the neural network used to obtain
Fig. 11).  In Fig. 14b, the two PLATV variations with
advance ratio (at constant thrust) show similar trends,
namely, a decrease in the pilot floor lateral vibration
with advance ratio.

PLONGV from flight test hub accelerations. Figure 15a
shows the correlation plot for the PLONGV using the
flight test hub accelerations. Figure 15b shows the
representative, predicted PLONGV using the flight test
hub accelerations and the flight test PLONGV derived

from Fig. 12 (from the neural network used to obtain
Fig. 12).  In Fig. 15b, the two PLONGV variations
with advance ratio (at constant thrust) show similar
trends, namely, a decrease in the pilot floor longitudinal
vibration with advance ratio.

Pilot vibration prediction using wind tunnel
rotating system hub accelerations

Three different MISO 5-2-1 back-propagation neural
networks are used (one for each of the three vibration
components). The five wind tunnel inputs are as
follows: the three relevant wind tunnel hub
accelerations, the advance ratio, and (CTcosα

s
)/σ.  The

single output is the respective pilot floor vibration
flight test value (flight test PVV or flight test PLATV
or flight test PLONGV).  For PVV, the above back-
propagation network has been trained for 56,000
iterations with resulting R = 0.997 and RMS error =
0.002 g's.  For PLATV, the above back-propagation
network has been trained for 13,500 iterations with
resulting R = 0.995 and RMS error = 0.001 g's.  For
PLONGV, the above back-propagation network has been
trained for 45,000 iterations with resulting R = 0.995
and RMS error = 0.003 g's.  The three correlation plots
and the predictions for the three pilot floor vibration
components are presented as follows.

PVV from wind tunnel hub accelerations. Figure 16a
shows the correlation plot for the PVV using the
measured wind tunnel hub accelerations.  Figure 16b
shows the representative, predicted PVV with advance
ratio and the flight test PVV derived from Fig. 10.
Figures 16a and 16b show that the three relevant
measured wind tunnel hub accelerations and the
operating parameters can characterize and quantify the
low speed level flight PVV.

PLATV from wind tunnel hub accelerations. Figure 17a
shows the correlation plot for the PLATV using the
measured wind tunnel hub accelerations.  Figure 17b
shows the representative, predicted PLATV with advance
ratio and the flight test PLATV derived from Fig. 11.
Figures 17a and 17b show that the three relevant
measured wind tunnel hub accelerations and the
operating parameters can characterize and quantify the
low speed level flight PLATV.

PLONGV from wind tunnel hub accelerations. Figure
18a shows the correlation plot for the PLONGV using
the measured wind tunnel hub accelerations.  Figure 18b
shows the representative, predicted PLONGV with
advance ratio and the flight test PLONGV derived from
Fig. 12.  Figures 18a and 18b show that the three
relevant measured wind tunnel hub accelerations and the
operating parameters can characterize and quantify the
low speed level flight PLONGV.
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Pilot vibration prediction using wind tunnel
balance-system hub loads

Three different MISO 8-2-1 back-propagation neural
networks are used (one for each of the three vibration
components).  The eight wind tunnel inputs are as
follows: the six measured wind tunnel fixed system
N/rev balance-system hub loads, the advance ratio, and
(CTcosα

s
)/σ (the latter two inputs are the same as the

operating parameters). The single output is the
respective pilot floor vibration flight test value (flight
test PVV or flight test PLATV or flight test PLONGV).
For PVV, the above back-propagation network has been
trained for 13,400 iterations with resulting R = 0.997
and RMS error = 0.002 g's.  For PLATV, the above
back-propagation network has been trained for 3220
iterations with resulting R = 0.995 and RMS error =
0.001 g's.  For PLONGV, the above back-propagation
network has been trained for 5750 iterations with
resulting R = 0.996 and RMS error = 0.002 g's. The
three correlation plots and the predictions for the three
pilot floor vibration components are presented as
follows.

PVV from wind tunnel balance loads.  Figure 19a shows
the resulting correlation plot for the PVV.  Figure 19b
shows the representative, predicted PVV with advance
ratio and the flight test PVV derived from Fig. 10.
Figures 19a and 19b show that the six components of
the measured wind tunnel N/rev balance-system hub
loads and the operating parameters can represent the low
speed level flight PVV.  

PLATV from wind tunnel balance loads.  Figure 20a
shows the resulting correlation plot for the PLATV.
Figure 20b shows the representative, predicted PLATV
with advance ratio and the flight test PLATV derived
from Fig. 11.  Figures 20a and 20b show that the six
components of the measured wind tunnel N/rev balance-
system hub loads and the operating parameters can
represent the low speed level flight PLATV.

PLONGV from wind tunnel balance loads.  Figure 21a
shows the resulting correlation plot for the PLONGV.
Figure 21b shows the representative, predicted PLONGV
with advance ratio and the flight test PLONGV derived
from Fig. 12.  Figures 21a and 21b show that the six
components of the measured wind tunnel N/rev balance-
system hub loads and the operating parameters can
represent the low speed level flight PLONGV.

Concluding Remarks

Using only flight test data, it was shown earlier (Refs. 1
and 2) that neural networks can be used to connect the
flight test rotating system hub accelerations to the flight
test pilot floor vibration.  The present neural network
representation study introduces the use of full-scale wind

tunnel test data to model the flight test pilot floor
vibration.  This study considers the three peak, N/rev
components of the flight test pilot floor vibration in
low speed level flight.  Specific conclusions from this
study are as follows:

1) The wind tunnel rotating hub accelerations and
operating parameters can be used to represent the low
speed pilot floor vibration.

2) The wind tunnel fixed-system N/rev hub loads and
the operating parameters can also be used to represent
the low speed pilot floor vibration.

3) Based on the above conclusions, it appears that the
wind tunnel rotating system hub accelerations can have a
significant role since they can be used to represent the
pilot floor vibration.  In order to model the pilot floor
vibration, compared to the use of the fixed system
balance-system hub loads, the successful use of the
rotating system hub accelerometers may entail less
effort.  This would be because the use of a fixed system
balance-system would involve the associated calibration
of the balance (which in the present case was calibrated
using a static procedure).  However, at the same time,
good results have been presently obtained using the hub
loads without the dynamic calibration of the balance,
i.e., good "R's" have been obtained with only static
calibration of the balance.

In general, the successful establishment of neural
network based connections between the wind tunnel
parameters and the flight test data (such as the
connections that have been initiated in the present study)
can significantly increase the value of wind tunnel
testing.
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Fig. 1. UH-60A peak, N/rev pilot floor vertical vibration, PVV, variation with advance ratio.

Fig. 2. UH-60A peak, N/rev pilot floor lateral vibration, PLATV, variation with advance
ratio.
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Fig. 3. UH-60A peak, N/rev pilot floor longitudinal vibration, PLONGV, variation with
advance ratio.

                     Fig. 4. PVV correlation using advance ratio and gross weight.
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                      Fig. 5. PLATV correlation using advance ratio and gross weight.

                    Fig. 6. PLONGV correlation using advance ratio and gross weight.
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                    Fig. 7. Predicted PVV trends using advance ratio and gross weight.

                    Fig. 8. Predicted PLATV trends using advance ratio and gross weight.
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                   Fig. 9. Predicted PLONGV trends using advance ratio and gross weight.

Fig. 10. Predicted flight test PVV using advance ratio and gross weight, evaluated at 62
wind tunnel data points, includes thrust variations.
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Fig. 11. Predicted flight test PLATV using advance ratio and gross weight, evaluated at  62
wind tunnel data points, includes thrust variations.

Fig. 12. Predicted flight test PLONGV using advance ratio and gross weight, evaluated at  62
wind tunnel data points, includes thrust variations.

0.00

0.05

0.10

0.15

0.08 0.10 0.12 0.14 0.16 0.18 0.20

F
li

gh
t 

te
st

 
P

L
A

T
V

 
(a

s 
ca

lc
u

la
te

d
 

at
62

 
w

in
d

 
tu

n
n

el
 

d
at

a 
p

oi
n

ts
),

 
g'

s

Advance ratio

0.00

0.05

0.10

0.15

0.08 0.10 0.12 0.14 0.16 0.18 0.20

F
li

gh
t 

te
st

 
P

L
O

N
G

V
 

(a
s 

ca
lc

u
la

te
d

 
at

62
 

w
in

d
 

tu
n

n
el

 
d

at
a 

p
oi

n
ts

),
 

g'
s

Advance ratio



13

Fig. 13a. PVV correlation using flight test rotating system hub accelerations and operating
parameters.

Fig. 13b. PVV prediction using flight test rotating system hub accelerations and operating
parameters (CW/σσσσ    = 0.08).
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Fig. 14a. PLATV correlation using flight test rotating system hub accelerations and
operating parameters.

Fig. 14b. PLATV prediction using flight test rotating system hub accelerations and operating
parameters (CW/σσσσ        = 0.08).
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Fig. 15a. PLONGV correlation using flight test rotating system hub accelerations and
operating parameters.

Fig. 15b. PLONGV prediction using flight test rotating system hub accelerations and
operating parameters (CW/σσσσ    = 0.08).
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Fig. 16a. PVV correlation using wind tunnel rotating system hub accelerations and operating
parameters.

Fig. 16b. PVV prediction using wind tunnel rotating system hub accelerations and operating
parameters (CW/σσσσ    = 0.08).
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Fig. 17a. PLATV correlation using wind tunnel rotating system hub accelerations and
operating parameters.

Fig. 17b. PLATV prediction using wind tunnel rotating system hub accelerations and
operating parameters (CW/σσσσ    = 0.08).
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Fig. 18a. PLONGV correlation using wind tunnel rotating system hub accelerations
and operating parameters.

Fig. 18b. PLONGV prediction using wind tunnel rotating system hub accelerations and
operating parameters (CW/σσσσ    = 0.08).
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Fig. 19a. PVV correlation using six components of N/rev balance-system hub loads
and operating parameters.

Fig. 19b. PVV prediction using six components of N/rev balance-system hub loads
and operating parameters (CW/σσσσ    = 0.08).
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Fig. 20a. PLATV correlation using six components of N/rev balance-system hub loads
and operating parameters.

Fig. 20b. PLATV prediction using six components of N/rev balance-system hub loads
and operating parameters (CW/σσσσ    = 0.08).
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Fig. 21a. PLONGV correlation using six components of N/rev balance-system hub
loads and operating parameters.

Fig. 21b. PLONGV prediction using six components of N/rev balance-system hub loads
and operating parameters (CW/σσσσ    = 0.08).
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